Discovering task-oriented usage pattern for web recommendation
نویسندگان
چکیده
Web transaction data usually convey user task-oriented behaviour pattern. Web usage mining technique is able to capture such informative knowledge about user task pattern from usage data. With the discovered usage pattern information, it is possible to recommend Web user more preferred content or customized presentation according to the derived task preference. In this paper, we propose a Web recommendation framework based on discovering task-oriented usage pattern with Probabilistic Latent Semantic Analysis (PLSA) model. The user intended tasks are characterized by the latent factors through probabilistic inference, to represent the user navigational interests. Moreover, the active user’s intuitive task-oriented preference is quantized by the probabilities, by which pages visited in current user session are associated with various tasks as well. Combining the identified task preference of current user with the discovered usage-based Web page categories, we can present user more potentially interested or preferred Web content. The preliminary experiments performed on real world data sets demonstrate the usability and effectiveness of the proposed approach.
منابع مشابه
A Web Recommendation Technique Based on Probabilistic Latent Semantic Analysis
Web transaction data between Web visitors and Web functionalities usually convey user task-oriented behavior pattern. Mining such type of clickstream data will lead to capture usage pattern information. Nowadays Web usage mining technique has become one of most widely used methods for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage m...
متن کاملA Neoteric Web Recommender System based on Approach of Mining Frequent Sequential Pattern from Customized Web Log Preprocessing
A real world challenging task of the web master of an organization is to match the needs of user and keep their attention in their web site. So, only option is to capture the intuition of the user and provide them with the recommendation list. Web usage mining is a kind of data mining method that provide intelligent personalized online services such as web recommendations, it is usually necessa...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملModeling user hidden navigational behavior for Web recommendation
Web users exhibit a variety of navigational interests through clicking a sequence of Web pages. Analyses of Web usage data will lead to discovering Web user access patterns, and in turn, facilitating users to locate more preferable Web contents via collaborative recommendation techniques. In the context of Web usage mining, Latent Semantic Analysis (LSA) based on probability inference provides ...
متن کاملParallel Algorithm Based Consumer Behavior Analysis for Generating Personalized Ontology System
Consumer face a dramatic problem related to web search. They expect the most relevant and efficient results. While the result often disappoint the consumer and also their precious time. This paper propose a semantic web usage mining approach for discovering periodic internet access patterns from elucidated net usage logs which incorporates data on client emotions and behaviors through self-repo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006